178 research outputs found

    Extended Classical Over-Barrier Model for Collisions of Highly Charged Ions with Conducting and Insulating Surfaces

    Full text link
    We have extended the classical over-barrier model to simulate the neutralization dynamics of highly charged ions interacting under grazing incidence with conducting and insulating surfaces. Our calculations are based on simple model rates for resonant and Auger transitions. We include effects caused by the dielectric response of the target and, for insulators, localized surface charges. Characteristic deviations regarding the charge transfer processes from conducting and insulating targets to the ion are discussed. We find good agreement with previously published experimental data for the image energy gain of a variety of highly charged ions impinging on Au, Al, LiF and KI crystals.Comment: 32 pages http://pikp28.uni-muenster.de/~ducree

    Giving is a question of time: Response times and contributions to a real world public good

    Get PDF
    Recent experimental research has examined whether contributions to public goods can be traced back to intuitive or deliberative decision-making, using response times in public good games in order to identify the specific decision process at work. In light of conflicting results, this paper reports on an analysis of response time data from an online experiment in which over 3400 subjects from the general population decided whether to contribute to a real world public good. The between-subjects evidence confirms a strong positive link between contributing and deliberation and between free-riding and intuition. The average response time of contributors is 40 percent higher than that of free-riders. A within-subject analysis reveals that for a given individual, contributing significantly increases and free-riding significantly decreases the amount of deliberation required

    Diverse chemotypes drive biased signaling by cannabinoid receptors

    Get PDF
    Cannabinoid CB1 and CB2 receptors are members of the G protein-coupled receptor family, which is the largest class of membrane proteins in the human genome. As part of the endocannabinoid system, they have many regulatory functions in the human body. Their malfunction therefore triggers a diverse set of undesired conditions, such as pain, neuropathy, nephropathy, pruritus, osteoporosis, cachexia and Alzheimer’s disease. Although drugs targeting the system exist, the molecular and functional mechanisms involved are still poorly understood, preventing the development of better therapeutics with fewer undesired effects. One path toward the development of better and safer medicines targeting cannabinoid receptors relies on the ability of some compounds to activate a subset of pathways engaged by the receptor while sparing or even inhibiting the others, a phenomenon known as biased signaling. To take advantage of this phenomenon for drug development, a better profiling of the pathways engaged by the receptors is required. Using a BRET-based signaling detection platform, we systematically analyzed the primary signaling cascades activated by CB1 and CB2 receptors, including 9 G protein and 2 β-arrestin subtypes. Given that biased signaling is driven by ligand-specific distinct active conformations of the receptor, establishing a link between the signaling profiles elicited by different drugs and their chemotypes may help designing compounds that selectively activate beneficial pathways while avoiding those leading to undesired effects. We screened a selection of 35 structurally diverse ligands, including endocannabinoids, phytocannabinoids and synthetic compounds structurally similar or significantly different from natural cannabinoids. Our data show that biased signaling is a prominent feature of the cannabinoid receptor system and that, as predicted, ligands with different chemotypes have distinct signaling profiles. The study therefore allows for better understanding of cannabinoid receptors signaling and provides the information about tool compounds that can now be used to link signaling pathways to biological outcomes, aiding the design of improved therapeutics

    Long Lasting Local and Systemic Inflammation after Cerebral Hypoxic ischemia in Newborn Mice

    Get PDF
    Background: Hypoxic ischemia (HI) is an important cause of neonatal brain injury and subsequent inflammation affects neurological outcome. In this study we performed investigations of systemic and local activation states of inflammatory cells from innate and adaptive immunity at different time points after neonatal HI brain injury in mice. Methodology/Principal Findings: We developed a multiplex flow cytometry based method combined with immunohistochemistry to investigate cellular immune responses in the brain 24 h to 7 months after HI brain injury. In addition, functional studies of ex vivo splenocytes after cerebral hypoxic ischemia were performed. Both central and peripheral activation of CD11b + and CD11c + antigen presenting cells were seen with expression of the costimulatory molecule CD86 and MHC-II, indicating active antigen presentation in the damaged hemisphere and in the spleen. After one week, naïve CD45rb + T-lymphocytes were demonstrated in the damaged brain hemisphere. In a second phase after three months, pronounced activation of CD45rb 2 T-lymphocytes expressing CD69 and CD25 was seen in the damaged hemisphere. Brain homogenate induced proliferation in splenocytes after HI but not in controls. Conclusions/Significance: Our findings demonstrate activation of both local and systemic immune responses months after hypoxic ischemic neonatal brain injury. The long term immune activation observed is of general importance for future studies of the inflammatory response after brain injury as most previous studies have focused on the first few weeks afte

    Multi-parameter optimization: Development of a morpholin-3-one derivative with an improved kinetic profile for imaging monoacylglycerol lipase in the brain

    Get PDF
    Monoacylglycerol lipase (MAGL) is a gatekeeper in regulating endocannabinoid signaling and has gained sub-stantial attention as a therapeutic target for neurological disorders. We recently discovered a morpholin-3-one derivative as a novel scaffold for imaging MAGL via positron emission tomography (PET). However, its slow kinetics in vivo hampered the application. In this study, structural optimization was conducted and eleven novel MAGL inhibitors were designed and synthesized. Based on the results from MAGL inhibitory potency, in vitro metabolic stability and surface plasmon resonance assays, we identified compound 7 as a potential MAGL PET tracer candidate. [11C]7 was synthesized via direct 11CO2 fixation method and successfully mapped MAGL dis-tribution patterns on rodent brains in in vitro autoradiography. PET studies in mice using [11C]7 demonstrated its improved kinetic profile compared to the lead structure. Its high specificity in vivo was proved by using MAGL KO mice. Although further studies confirmed that [11C]7 is a P-glycoprotein (P-gp) substrate in mice, its low P-gp efflux ratio on cells transfected with human protein suggests that it should not be an issue for the clinical translation of [11C]7 as a novel reversible MAGL PET tracer in human subjects. Overall, [11C]7 ([11C] RO7284390) showed promising results warranting further clinical evaluation.Molecular Physiolog

    Drosophila cbl Is Essential for Control of Cell Death and Cell Differentiation during Eye Development

    Get PDF
    Activation of cell surface receptors transduces extracellular signals into cellular responses such as proliferation, differentiation and survival. However, as important as the activation of these receptors is their appropriate spatial and temporal down-regulation for normal development and tissue homeostasis. The Cbl family of E3-ubiquitin ligases plays a major role for the ligand-dependent inactivation of receptor tyrosine kinases (RTKs), most notably the Epidermal Growth Factor Receptor (EGFR) through ubiquitin-mediated endocytosis and lysosomal degradation.Here, we report the mutant phenotypes of Drosophila cbl (D-cbl) during eye development. D-cbl mutants display overgrowth, inhibition of apoptosis, differentiation defects and increased ommatidial spacing. Using genetic interaction and molecular markers, we show that most of these phenotypes are caused by increased activity of the Drosophila EGFR. Our genetic data also indicate a critical role of ubiquitination for D-cbl function, consistent with biochemical models.These data may provide a mechanistic model for the understanding of the oncogenic activity of mammalian cbl genes
    • …
    corecore